2'-Fluoroarabino- and arabinonucleic acid show different conformations, resulting in deviating RNA affinities and processing of their heteroduplexes with RNA by RNase H.

نویسندگان

  • Feng Li
  • Sanjay Sarkhel
  • Christopher J Wilds
  • Zdzislaw Wawrzak
  • Thazha P Prakash
  • Muthiah Manoharan
  • Martin Egli
چکیده

2'-Deoxy-2'-fluoro-arabinonucleic acid (FANA) and arabinonucleic acid (ANA) paired to RNA are substrates of RNase H. The conformation of the natural DNA/RNA hybrid substrates appears to be neither A-form nor B-form. Consistent with this, the conformations of FANA and ANA were found to be intermediate between the A- and B-forms. However, FANA opposite RNA is preferred by RNase H over ANA, and the RNA affinity of FANA considerably exceeds that of ANA. By investigating the conformational boundaries of FANA and ANA residues in crystal structures of A- and B-form DNA duplexes at atomic resolution, we demonstrate that FANA and ANA display subtle conformational differences. The structural data provide insight into the structural requirements at the catalytic site of RNase H. They also allow conclusions with regard to the relative importance of stereoelectronic effects and hydration as modulators of RNA affinity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution structure of an arabinonucleic acid (ANA)/RNA duplex in a chimeric hairpin: comparison with 2'-fluoro-ANA/RNA and DNA/RNA hybrids.

Hybrids of RNA and arabinonucleic acid (ANA) as well as the 2'-fluoro-ANA analog (2'F-ANA) were recently shown to be substrates of the enzyme RNase H. Although RNase H binds to double-stranded RNA, no cleavage occurs with such duplexes. Therefore, knowledge of the structure of ANA/RNA hybrids may prove helpful in the design of future antisense oligonucleotide analogs. In this study, we have det...

متن کامل

Antisense oligodeoxynucleotides: synthesis, biophysical and biological evaluation of oligodeoxynucleotides containing modified pyrimidines.

6-Azathymidine, 6-aza-2'-deoxycytidine, 6-methyl-2'-deoxyuridine, and 5,6-dimethyl-2'-deoxyuridine nucleosides have been converted to phosphoramidite synthons and incorporated into oligodeoxynucleotides (ODNs). ODNs containing from 1 to 5 of these modified pyrimidines were compared with known 2'-deoxyuridine, 5-iodo-2'-deoxyuridine, 5-bromo-2'-deoxyuridine, 5-fluoro-2'-deoxyuridine, 5-bromo-2'-...

متن کامل

5′-O-Methylphosphonate nucleic acids—new modified DNAs that increase the Escherichia coli RNase H cleavage rate of hybrid duplexes

Several oligothymidylates containing various ratios of phosphodiester and isopolar 5'-hydroxyphosphonate, 5'-O-methylphosphonate and 3'-O-methylphosphonate internucleotide linkages were examined with respect to their hybridization properties with oligoriboadenylates and their ability to induce RNA cleavage by ribonuclease H (RNase H). The results demonstrated that the increasing number of 5'-hy...

متن کامل

Optimization of RNA Extraction from Rat Pancreatic Tissue

Background: Optimized RNA extraction from tissues and cell lines consists of four main stages regardless of the method of extraction: 1) homogenizing, 2) effective denaturation of proteins from RNA, 3) inactivation of ribonuclease, and 4) removal of any DNA, protein, and carbohydrate contamination. Isolation of undamaged intact RNA is challenging when the related tissue contains high levels of ...

متن کامل

Nearest neighbor parameters for Watson–Crick complementary heteroduplexes formed between 2′-O-methyl RNA and RNA oligonucleotides

Results from optical melting studies of Watson-Crick complementary heteroduplexes formed between 2'-O-methyl RNA and RNA oligonucleotides are used to determine nearest neighbor thermodynamic parameters for predicting the stabilities of such duplexes. The results are consistent with the physical model assumed by the individual nearest neighbor-hydrogen bonding model, which contains terms for hel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 45 13  شماره 

صفحات  -

تاریخ انتشار 2006